FSMTree: An Efficient Algorithm for Mining Frequent Temporal Patterns
نویسندگان
چکیده
Research in the field of knowledge discovery from temporal data recently focused on a new type of data: interval sequences. In contrast to event sequences interval sequences contain labeled events with a temporal extension. Mining frequent temporal patterns from interval sequences proved to be a valuable tool for generating knowledge in the automotive business. In this paper we propose a new algorithm for mining frequent temporal patterns from interval sequences: FSMTree. FSMTree uses a prefix tree data structure to efficiently organize all finite state machines and therefore dramatically reduces execution times. We demonstrate the algorithm’s performance on field data from the automotive business.
منابع مشابه
MINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کاملAn Efficient Algorithm for Mining Fuzzy Temporal Data
Mining patterns from fuzzy temporal data is an important data mining problem. One of these mining task is to find locally frequent sets, In most of the earlier works fuzziness was considered in the time attribute of the datasets .Although a couple of works have been done in dealing with such data, little has been done on the implementation side. In this article, we propose an efficient implemen...
متن کاملClosedPROWL: Efficient Mining of Closed Frequent Continuities by Projected Window List Technology
Mining frequent patterns in databases is a fundamental and essential problem in data mining research. A continuity is a kind of causal relationship which describes a definite temporal factor with exact position between the records. Since continuities break the boundaries of records, the number of potential patterns will increase drastically. An alternative approach is to mine closed frequent co...
متن کاملAssociation Rule Mining Considering Local Frequent Patterns with Temporal Intervals
In traditional association rule mining algorithms, if the minimum support is set too high, many valuable rules will be lost. However, if the value is set too low, then numerous trivial rules will be generated. To overcome the difficulty of setting minimum support values, global and local patterns are mined herein. Owing to the temporal factor in association rule mining, an itemset may not occur...
متن کاملDiscovering Periodic-Frequent Patterns in Transactional Databases
Since mining frequent patterns from transactional databases involves an exponential mining space and generates a huge number of patterns, efficient discovery of user-interest-based frequent pattern set becomes the first priority for a mining algorithm. In many real-world scenarios it is often sufficient to mine a small interesting representative subset of frequent patterns. Temporal periodicity...
متن کامل